
D I F F U S I O N  B A R O E F F E C T  IN  A C A P I L L A R Y  

I N  A B R O A D  R A N G E  O F  K N U D S E N  N U M B E R S  

V.  D. S e l e z n e v  a n d  P .  E .  S u e t i n  UDC 533.6.011.8 

The magnitude of the diffusion baroeffeet  in a capi l lary is calculated in the entire range of 
Knndsen numbers  based on a solution of BGK equations for  a binary gas equation. The theo- 
re t ica l  magnitudes of the baroeffect  agree  well with the experimental  resul ts  obtained in a 
broad range of Knudsen numbers .  The thermodynamic  coefficients are  calculated, and the 
Onsager  rec ip roca l  relat ion is demonstrated,  f r o m  which in the limit of a viscous sys tem 
it follows that the barodiffusion constant is equal to the coefficient of diffusion slippage. 

The flow of a b inary  gas mixture in a broad range of Knudsen numbers  is examined in [1-3]. A com- 
par i son  with experimental  data is absent in these ar t ic les .  This deficiency is aggravated by the fact that 
t h e r e  is no exact solution fo r  the problem either fo r  BGK (Bhatnagar, Gross,  and Krook [1]) equations o r  
fo r  the Boltzmann equation. The present  repor t  is devoted to a calculation of the magnitude of the diffusion 
baroeffect  and the t ime in which its maximum value is reached, which can be determined direct ly  in an ex- 
per iment .  During the solution of this problem and the comparison with experimental  data, the authors en- 
countered contradict ions in cer ta in  pa rame te r s  of the collisions. 

Thermodynamic  flows produced by p r e s s u r e  and concentration gradients  a re  studied in Sec. 3. The 
equality of the coefficient of diffusion slippage and the barodiffusion constant is demonstrated.  The la t ter  
quantity can be calculated by the c lass ica l  methods of Chapman and Enskog and of Grad in a problem with- 
out boundaries.  This fact  is proof that the coefficient of diffusion slippage cannot depend on the details of 
the interaction of the molecules  with the surface.  

1. Let us examine a sys tem of two bulbs of volumes V 1 and V 2 joined by a capil lary of radius R and 
length L. If the bulbs a re  filled with different gases  to the same p re s su re  p at the same tempera ture  T and 
the channel is opened, then as a resul t  of the mutual diffusion of the gases  a p r e s s u r e  difference a r i ses  
in the bulbs which after  a t ime t m reaches  a maximum value Apm. To determine the lat ter  two values, one 
mus t  know the average  velocit ies of the components of the mixture which a re  produced by the p re s su re  and 
concentrat ion gradients .  

The average  velocit ies can be determined f rom a solution of a system of BGK equations describing 
the isothermal  flow of a binary gas mixture  in a long capil lary:  

viVfl = v~i (M~ -- f~) + vii (Mij -- ./i) 
vjV/j = vjj (Mj -- fj) + ~j~ (Mj~ -- fj) (1.1) 

[ rn  i ] 

m i 
Mij : !l//o~ [ l - - k l z -  ~'-l~ijzUiz] 

Moi = noi (mJ2nkT)', ,  exp (--m~vi2/2kT) 

where M i is a l inear expansion of the local Maxwell distr ibution function, Mij are  functions describing the 
distr ibution of molecules  of the i- th component which have collided with molecules  of the j - th  component, 
M0i is the Maxwell distr ibution function, vii  and vij a re  the frequencies of self-  and c ross -co l l i s ions ,  f i  is 
the distribution hmction of the i - th  component, and ni is the density of the i- th component. 

Sverdlovsk. Transla ted f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 74-79, 
March-Apr i l ,  1973. Original ar t ic le  submitted July 24, 1972. 

�9 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission of  the publisher. A copy o f  this article is available from the publisher for $15.00. 

208 



0 

o5 

Fig. i 

~g 

5-- 

10-2 

~ ; 

I 
t 

i0-I 

s I ~ r  
O2 

, v J  

o 5 

/ga /g/ /gz ~y 

Fig.  2 

Let  u s  a s s u m e  a l inea r  va r ia t ion  in densi ty  of each component  
along the cap i l l a ry  axis  

n~ (z) = n0~ (l - k~z) 

where  n0i is the densi ty  of molecu les  at the origin of the coordinate  
s y s t e m  which is located at  the cen te r  of the capi l la ry .  

The a v e r a g e  ve loc i ty  of molecu les  of the i - th  component  which 
have undergone col l is ions with molecu les  of the j - th  component depends 
on the a v e r a g e  veloci t ies  of the components  in the following way: 

uij z = Uiz ~- 5m~mo -z ( u ~ :  - -  a~z) 

where  m 0 = m i + m j ,  while the col l is ion p a r a m e t e r  6 is, in genera l ,  a 
function of the m a s s e s  of the mo lecu l e s  and the i r  d i ame te r s .  

De te rmina t ions  of a l l  the enumera ted  values  (as wel l  as  those 
which will  be encountered l a t e r  for  the j - th  component) a r e  obtained 
by exchanging the indices i = j  in the r e spec t i ve  equations.  In se lec t -  
ing the p a r a m e t e r s  vjj, vii, vij, and 5 of the col l is ions f r o m  the condi- 
tion of co r respondence  of the m o m e n t s  of the Bol tzmann coll is ion in- 
t eg r a l  and its BGK model  [4], no conditions a re  se t  on the value of 6. 
M o r s e  [5] suggested taking 5 = 1, which leads to an i n c o r r e c t  Schmidt 
number  and the imposs ib i l i ty  of a c o r r e c t  desc r ip t ion  of diffusion and 
v i scous  flow s imul taneously .  The r equ i r emen t  of a c o r r e c t  Schmidt 
n u m b e r  in the l imit  of identical  mo lecu le s  of the i-th and j - t h  compon-  
ents leads  to 6 = 5 / 3 .  The value 6 = 5 / 3  can be used only in the case  
of close m a s s e s  and molecule  d i a m e t e r s .  

Another  well- tmown approach  to the se lec t ion  of the col l is ion 
p a r a m e t e r s  is as  follows: ~ =1, while t~,,, ~ : ,  and ~:: a r e  de te rmined  

~-J- J ~J 
from a comparison of the solution of the system of equations (1.1) by 
the Chapman-Enskog method with the experimental values of the coef- 

f ic ients  of v i scos i ty  ~?i and ~?j of the pure  components  and the diffusion coefficient  Dij. With such a s e l e c -  
tion of the col l is ion p a r a m e t e r s , t h e  coefficient  of v i s cos i t y  ~/ of the mix tu re  d i f fe rs  by 1.5-2 t imes  f r o m  the 
expe r imen ta l  value fo r  many  p a i r s  of gases .  

In the p re sen t  work , the  col l is ion p a r a m e t e r s  ~ii, ~jj, ~ij, and 6 were  de te rmined  f r o m  the condition 
of obtaining the c o r r e c t  va lues  of all  four  coefficients:  ~?i, ~?j, V, Dij. 

As shown in [1], the solution of the s y s t em of equations (1.1) leads  to the following equations fo r  the 
a v e r a g e  ve loc i t ies  of the components:  

~z~ z = b~ (A~r ~ -[- B~ - -  1) 

where  the coeff ic ients  Ai, A j, Bi, and B j, which depend on the Knudsen number s  of the components,  a r e  a 
solution of an a lgebra ic  s y s t e m  of equations wri t ten  in m a t r i x  f o r m  

Wi Y~ Hi Pi Bi /2 
Pj Gj Y~ Mj • Aj = 
H~ Pj Wj Y~ Bj LJ, I2J  

(1 .2)  

where  the following des ignat ions  a r e  introduced: 

Yi = C12 i + zti (n/2 - -  C1~), Wi = Cll ~ + ai (n/3 --'Cll ~) 
Mi = C22 i + ai (~ - -  C~2~), H~ = - -  o ~ i b j b 1 - 1  (g/3  - -  Cn  i) 

P~ = --  aib~b~ -i  (~/2 --  Ci2i), G~ = --  aib~5~ -i (g - -  C2~) 
Cn ~ = I12 [ea/a + i60/6i 2] + 48/6~I01- 11 ~ [40/3 + 32/6~ 2] -- g/6~ 2 @ 8]/-~/38~ 

8 C12 i = I~  [8/~i ~ - -  s/a] + ~2/3112 + "~i I31 - -  n / ~  + 4 ] / ~ / 3 8 1  

C~-= 8110' I,~ TM (6) = S I x~ (l --  x2) ~:~ y~ exp (--  y2 _ 26x/y) dxdy 
0 3  
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b~ = [A~ (i - -  a.O --  A.#~l/(l - -  a~ - -  a~), A~ = ~/~ (2kT/mO'/,  B k d S .  

8i = (rnil2kT)'/"~iR 

(6 i is  the i n v e r s e  Knudsen  n u m b e r ) .  

By so lv ing  the  s y s t e m  of equa t ions  (1.2) one can obtain  equat ions  f o r  the v e l o c i t i e s  of the c o m p o n e n t s  
a v e r a g e d  o v e r  the c r o s s  s ec t ion  of the c a p i l l a r y  

<a~z > = bi(1)i + bjFi 

where the following designations are introduced: 

@~ = A-: {:tO (1 - -  a~) ~ - -  ~/:2~2~ (t - -  a~) ~ + ~2a~07~'~ - -  ~ / l ~ a ~  [:q~j + ~I~:l --  V12~:r - -  ~ (1.3) 

F~ = A -1 {--  ~O~'f~ + ~2~0~;~'7~ + *l~2st~t#~,~ - -  ~l~2~aa~ [~ + a~Ti] + ~!~2~t2~ (1 -- zg) x~} (1.4) 

A = 0 2 ~  + ~a~0~7~' + ~ } ~ / - -  1 i ~ , ~ 2 ~  (x, + x~) - 1/~2~2 ( ~ ? ~  + a~2~) (1.5) 

~ i  = C12 i - -  C l l  i - -  1/4C221, ~ i t  -~- s~i - -  1 /12C22i  

0 = I - -  o~ i - -  (x~, ~ i  -=  ( C l ~ i )  2 - -  Cll iC'~2i 

x~ = C~2 ~ (~ /~C~2 ~ - -  C~ d)  - -  C12 ~ (~ /2C~J - -  C~2 ~) 

2. A s s u m i n g  that  the t ime  it  t a k e s  to e s t a b l i s h  s t a t i o n a r y  f low in the c a p i l l a r y  is  neg l ig ib ly  s m a l l  com- 
p a r e d  with  the  r e l a x a t i o n  t i m e  in the bu lbs ,  one can  w r i t e  equat ions  of c o n s e r v a t i o n  of the n u m b e r  of m o l e -  
cu les  of each  componen t  

Onil Y~I~ ~ 
Ot = - -  V~ <uiz > = Dinil + Cinj~ + K~ 

On j2 ~R 2 ....... 
Ot = ~ <ujz> = Cjn~i + Djnj2 + K j  (2 .1)  

Vj~ [F i - -  ~i(aP~ + Fi)] Di ----- r [:~j (~i + F~) -- aPi], C~ -- 
~imi 

--- gR~kT /VOL,  V = V1V2/(VI + Vz) 

w h e r e  nil(t) is  the dens i ty  of m o l e c u l e s  of the i - t h  c o m p o n e n t  in the  f i r s t  bulb  and nj2(t ) is  the dens i ty  of 
m o l e c u l e s  of the j - t h  componen t  in the second bulb.  

Having  d e t e r m i n e d  nil(t) and nj2(t) f r o m  the  s y s t e m  of equat ions  (2 .1) ,one can find the m a x i m u m  va lue  
&Pro of the b a r o e f f e c t  and the t i m e  t m when  it i s  r e a c h e d , b y  t i m e  d i f f e ren t i a t ion  of the solut ion  obtained:  

i In S~ (2.2) 
tra - -  Si  -- 52 Si 

ap m (D i + C i - -  $2) (Sx - -  D i - -  C 0 (eS,tm eS,t m) 
p C i (S2~-- S0 - -  (2.3) 

Sx,2 = (Di + Dff/,-+- '/2 ] /  (Di - -  Dj) 2 + 4CiCj 

Let  us  examine  the f r e e - m o l e c u l a r  l imi t  (6 i j -~  0) of Eqs.  (2.2) and (2.3). Having  used  the we l l -known 
s e r i e s  expans ion  of the  i n t e g r a l s  I n  m, w e  obta in  

3LV V mlmj 1 / m - ~  

AP m l n ~ /  
( 

" - / \ 

which  co inc ides  wi th  the  equa t ions  f o r  t he se  v a l u e s  obta ined  on the  b a s i s  of K n u d s e n ' s  equat ion f o r  the flow 
r a t e  of  a g a s  in a f r e e - m o l e c u l a r  p r o c e s s .  

Le t  us  examine  the v i s c o u s  l imi t  of Eqs.  (2.2) and (2.3) 

8VL11 R~p AP m 8Dij~l 
t r a=  ~ In 

8Dijl l , I o RZp 

w h e r e  a i s  the coef f ic ien t  of  d i f fus ion  s l ippage ,  whi le  the v i s c o s i t y  of the  m i x t u r e  is  
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~1 = P (vicj q- vZ i ) / v iv j ,  c i = n J n ,  Dtj  = kTc j /~6v i j ,  ~t = m l m ~ / m  o 

Calculat ions were  conducted accord ing  to Eqs. (2.2) and (2.3) in the ent i re  range  of Knudsen numbers  
for  f ive p a i r s  of gases .  The in teg ra l s  It ~ I01, and Ii 2 needed fo r  the ca lcula t ions  were  de te rmined  on an e l ec -  
t ronic  computer .  The col l i s ion p a r a m e t e r s  w e r e  de te rmined  f r o m  exper imen ta l  coeff icients  by the following 
equations: 

~ = p/2~h, v~j = p/2~l~ , 6 = k T / 2 1 ~ j D i j  

~[1  i i ]~__~..V _}_( ) 

The calcula ted cu rves  and expe r imen ta l  va lues  of tm(Sii)  and Apm(6ij) a re  p resen ted  in F igs .  1 and 2. 
The t e r m s  a r e  as follows: A p m  in m m  Hg, t m in 102 see,  5ij g 26i5j / (5i  + 5j). The cu rves  and points c o r r e -  
spond to: 1) H e - A t ,  2) H2-D2, 3) D 2 - A r ,  4) H 2 - A r ,  5) H 2 - H e .  

With good a g r e e m e n t  of the theore t ica l  and e x p e r i m e n t a l  r e su l t s  with r e spec t  to APm , an inc rease  in 
the d i s ag reemen t  to 20% is observed  in the in te rmedia te  p r o c e s s  for  the v i scous  and f r e e - m o l e c u l a r  l imi ts .  
The excess  of the expe r imen ta l  va lues  of Apm over  the theore t ica l  va lues  in the f r e e - m o l e c u l a r  region is 
explained by the fact  that the l igh ter  ga se s  have the p r inc ipa l  sha re  of the specu la r  ref lec t ion.  

The d i s a g r e e m e n t  in the region of the v iscous  p r o c e s s  with sl ippage apparen t ly  mus t  be  a t t r ibuted to 
the insuff icient ly accu ra t e  calculat ion of the coeff icient  of  diffusion slippage, which is v e r y  sens i t ive  to the 
p a r a m e t e r s  of the in teract ion potent ia ls  of the molecu les .  Since only the ra t io  of f luxes of the components  
en te r s  into Apm, it is  of spec ia l  in te res t  to c o m p a r e  the theore t ica l  calculat ions and exper imen ta l  r e su l t s  
on the t ime  it t akes  to r e a c h  the m a x i m u m  baroef fec t .  I t  is seen  f r o m  Fig.  2 that the a g r e e m e n t  is good - 
the d i s ag reemen t  not exceeding 10%. Thus,  the compar i son  shows that the model  BGK equations f o r  t h e m o s t  
p a r t  de sc r i be  the exper imen ta l  data  well.  F o r  be t t e r  a g r e e m e n t  in the region of the nea r ly  f r e e - m o l e c u l a r  
p roces s ,  it is n e c e s s a r y  to adopt m o r e  r ea l i s t i c  boundary conditions than comple te ly  diffuse ref lect ion.  In 
o rde r  to achieve  a c o r r e c t  descr ip t ion  of the v i scous  l imit  e i ther  the model  mus t  be  improved  o r  the Bol tz-  
mann  equation mus t  be solved d i rec t ly  with the actual  in terac t ion  potential  o f  the molecu les .  

3. Let us examine  the flow, produced by p r e s s u r e  and concentra t ion gradients ,  of a b inary  mix tu re  
in a cap i l l a ry  f r o m  the point of view of the t h e rmodynamics  of i r r e v e r s i b l e  p r o c e s s e s .  The f luxes of p a r t i -  
cle number  and m a s s  a r e  wr i t t en  as 

] i  : n~ <u~z> q- n j  ( a j z )  : L l l X 1  q- LI~X2 
ar2 : p [<a~z> --  <u~]  = L21X 1 + L~2X2 

respec t ive ly ,  where  p is the densi ty  of the mixture ,  while 

X I = - - p  i__ a.....E_p X o = - - n  & 
p az ' 

e m e r g e  in the ro le  of t he rmodynamic  fo rces ,  where ,  according  to O n s a g e r ' s  in te rac t ion  pr inciple ,  the c ro s s  
kinet ic  coeff icients  a r e  equal to Lt2 = L21. Having made use  of the equations f o r  the a v e r a g e  veloci t ies  of 
the components ,  we find the kinet ic  coeff icients  

nkT [ Ct ci%t i a~ ] 
L u  = ~ -77aq (q& q- Fi) - -  e iF  i - -  e l 9  q~i q- z'i (qO~ + F~) - -  c i ,77.. F5 - -  c~V~ 

;~T[~7 ~~ ~ l  
ci~i F" c~ui ] 

L2I== Omjvj L c~ cju~ 
pkT [ 

[ F i  T F i  - -  L ~  nOmlv~c~ ~ ' . 

The di f ference  between the c r o s s  k inet ic  coeff icients  has  the fo rm 

L=I - -  n ~  = Omz~kT t[%(~Pt9 q- Ft -- ~ -- Fj) q- ~ Fj -- Fi -- -~f F~q-. ~ F ~ j  (3.1) 

b e r s .  
By substi tut ing Eqs. (1.4) and (1.5) into (3.1},one can show that Lal--L12 = 0 for  a r b i t r a r y  Knudsen num-  
In the l imit  (5i, j ~ oo) of the v i sc~as  p r o c e s s  we have 

L12 = Dij(~, L n = R2pn/8~lp 

L22 = pn -1 D~j, L21 = r 
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fo r  the kinetic coefficients,  where  ap  is the barodiffusion constant, with 

The following conclusions can be drawn f rom the equality of the c ros s  coefficients.  The coefficient 
L21, charac te r iz ing  the "separa t ion  effect" of ' the mixture  in the ent i re  range of Knudsen numbers,  which is 
of p rac t ica l  importance,  is more  conveniently studied exper imea ta l lyby  measur ing  In2 in exper iments  on the 
diffusion baroeffect .  The s impl ic i ty  and completely attainable sufficient accuracy  of the measurement  of 
the coefficient of diffusion slippage f rom exper iments  on the baroeffect  pe rmi t  one to recommend its appli- 
cation for  the de terminat ion  and control  of p a r a m e t e r s  of the interact ion potentials  of molecules .  An exact 
express ion  for  the coefficient of diffusion slippage did not exist  before .  The barodiffusion constant is cal-  
culated exact ly by Grad ' s  method in [6] for  any interact ion potential. 
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