DIFFUSION BAROEFFECT IN A CAPILLARY
IN A BROAD RANGE OF KNUDSEN NUMBERS
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The magnitude of the diffusion baroeffect in a capillary is calculated in the entire range of
Knudsen numbers based on a solution of BGK equations for a binary gas equation. The theo-
retical magnitudes of the baroeffect agree well with the experimental results obtained in a
broad range of Knudsen numbers. The thermodynamic coefficients are calculated, and the
Onsager reciprocal relation is demonstrated, from which in the limit of a viscous system

it follows that the barodiffusion constant is equal to the coefficient of diffusion slippage.

The flow of a binary gas mixture in a broad range of Knudsen numbers is examined in [1-3]. A com-
parison with experimental data is absent in these articles. This deficiency is aggravated by the fact that
-there is no exact solution for the problem either for BGK (Bhatnagar, Gross, and Krook [1]) equations or
for the Boltzmann equation. The present report is devoted to a calculation of the magnitude of the diffusion
baroeffect and the time in which its maximum value is reached, which can be determined directly in an ex-
periment. During the solution of this problem and the comparison with experimental data, the authors en-
countered contradictions in certain parameters of the collisions.

Thermodynamic flows produced by pressure and concentration gradients are studied in Sec. 3. The
equality of the coefficient of diffusion slippage and the barodiffusion constant is demonstrated. The latter
quantity can be calculated by the classical methods of Chapman and Enskog and of Grad in a problem with-
out boundaries. This fact is proof that the coefficient of diffusion slippage cannot depend on the details of
the interaction of the molecules with the surface.

1, Let us examine a system of two bulbs of volumes V; and V, joined by a capillary of radius R and
length L, If the bulbs are filled with different gases to the same pressure p at the same temperature T and
the channel is opened, then as a result of the mutual diffusion of the gases a pressure differencearises
in the bulbs which after a time ty, reaches a maximum value Apy. To determine the latter two values, one
must know the average velocities of the components of the mixture which are produced by the pressure and
concentration gradients.

The average velocities can be determined from a solution of a system of BGK equations describing
the isothermal flow of a binary gas mixture in a long capillary:

viVii = v (M; — ;) + vi; (M — 1)

ViVl =i (M — f3) 4 i (M5 — 5) (1.1
M, =M,y [1 —kyz —'Zl—Tiuiz Uiz]

m, ]
M= M, [1 —kiz — "—Iﬂt ui.‘izviz]

Moi = ng; (mi/2nkT)'s exp (—m;?/2kT)

where M; is a linear expansion of the local Maxwell distribution function, M;; are functions describing the
distribution of molecules of the i-th component which have collided with molecules of the j-th component,
M,; is the Maxwell distribution function, vij and vjj are the frequencies of self- and cross-collisions, fj is
the distribution function of the i-th component, and n; is the density of the i-th component,
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Let us assume a linear variation in density of each component

An ’ along the capillary axis

o Do b
Ty R R

n; (2) = ng (1 — k)

!

where ngj is the density of molecules at the origin of the coordinate
\ system which is located at the center of the capillary.

The average velocity of molecules of the i~th component which
7 \ have undergone collisions with molecules of the j-th component depends

-2
7 f \\x on the average velocities of the components in the following way:

Uiy = %iz + Omymy™t (w5, — uy,)

where mg=mj+mj, while the collision parameter & is, in general, a
w7 w7 owt w wt gy function of the masses of the molecules and their diameters.

Fig. 1 Determinations of all the enumerated values (as well as those
which will be encountered later for the j-th component) are obtained
by exchanging the indices i#=j in the respective equations. In select-
ing the parameters v iy Viie Vije and § of the collisions from the condi-
tion of correspondence of the moments of the Boltzmann collision in-
tegral and its BGK model [4], no conditions are set on the value of &.
Morse [5] suggested taking 6 =1, which leads to an incorrect Schmidt
number and the impossibility of a correct description of diffusion and
viscous flow simultaneously. The requirement of a correct Schmidt

, number in the limit of identical molecules of the i-th and j-th compon-
—T1"2;5 _ ents leads to 6 =5/3. The value 6 =5/3 can be used only in the case

' of close masses and molecule diameters.

t, 10%]sec
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Another well-known approach to the selection of the collision
vttt 0 8y parameters is as follows: 6 =1, while Vije Vi and y;; are determined
Fig. 2 from a comparison of the solution of the sysf.]em of equations (1.1) by
the Chapman— Enskog method with the experimental values of the coef-
ficients of viscosity nj and 71 j of the pure components and the diffusion coefficient Djj. With such a selec-
tion of the collision parameters,the coefficient of viscosity 1 of the mixture differs by 1.5-2 times from the
experimental value for many pairs of gases,

In the present work,the collision parameters vy, v ij vije and 6 were determined from the condition
of obtaining the correct values of all four coefficients: n;, Mjs s Dij-

As shown in [1], the solution of the system of equations (1.1) leads to the following equations for the
average velocities of the components:
w, = b (4% +- B, — 1)

where the coefficients Aj, A js Bj, and Bj, which depend on the Knudsen numbers of the components, are a
solution of an algebraic system of equations written in matrix form

'y, M, P, G A4; t
W, Y; H;, P; % By | | nj2 1.2)
Pj Gj Yj Mj Aj I
H; P; W; Y; B; /2

where the following designations are introduced:

Y= Cpl+ o (12— Cpl), W;=Cyl+ 2;(n/3 —Cyyi)
M; = Cyt 4+ a; (1 — Coy), H; = — abh™ (/3 — Cyyi)
P, = —abp (/2 — Crl)y Gy = — aibihy™ (1 — Cal)
Cut = L2 [*/s+ 160/8;2] + 48/8,1y'— I [40/3 + 32/8;2] — /5.2 - 8) /38,

Crot =10 [8/8;% — %3] + %/1,> + % Tt — 7/ 4+ 4]/:'_{/3&

100
Cpi=81p, I,™(8) = SS 2™ (1 — 22y y" exp (— y* — 28z/y) dady
2%
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o = Bmgvizimgvi, Vi = Vi - Vij
= [Ay (1 — o) — A1 /(1 — oy — ), A; = 1/5(2kT/m;)" RE; /85,
6i = (m,/2kT)‘2 ViR
(64 is the inverse Knudsen number).

By solving the system of equations (1.2) one can obtain equations for the velocities of the components
averaged over the cross section of the capillary

i) = b®; + b;F,;
where the following designations are introduced:

@; = A {70 (1 — o) Bys — Yaamx (1 — a5) Bj -+ w2075/, — Yaamoty (5 + il — Haseagangy — 4 1.3)
Fy = A {— nBxBiy; + 720775 + Yomioasl; — Mgt (o5 4 og7id 4 Haera (1 — o) %;} L.4)
= 02B,B; + et 0857y + 037y — YuaPaiot; (6 + %5) — M1 (47B; 4 a;2By) (L.5)

= Crt — Ciii — YaCasl,  Y1i' = Ti — Y12l
0=1—a;—a, B=(Cu)—CnCy
#; = Capl (1/20123‘ - Cuj) — C1gt (HoCo’ — C1d')

2. Assuming that the time it takes to establish stationary flow in the capillary is negligibly small com-
pared with the relaxation time in the bulbs, one can write equations of conservation of the number of mole-
cules of each component )

on, R?
P o T > = D+ Cong + K,
an. . - e
3:2 = RVR <u72> = CJnﬂl + D]nn + K (2.1)
D, = qum. [0;(®; + F)— D], Ci = [F—l((Dl—)—F)]

¢ = nR%TIVOL, V= VIVZ/(VI—l— A
where nj; (t) is the density of molecules of the i-th component in the first bulb and nj,(t) is the density of
molecules of the j-th component in the second bulb.

Having determined nj; ¢) and nj,(t) from the system of equations (2.1),0ne can find the maximum value
App, of the baroeffect and the time ty, when it is reached,by time differentiation of the solution obtained:

1 S
tm :E;—l“'s% 2.2)
Ap, (D, +C,—8)(S1—D,—C) St
» T, (55— 59 (m — ™'m) (2.3)

812 = (D; + D)+ 4=/, ¥V (Dy — D 4 4CiC;

Let us examine the free- molecular limit (6 —»0) of Egs. (2.2) and (2.3). Having used the well-known
series expansion of the integrals 'S we obtain -

; sLv mm; l/zn:
™ LR VIt (1/~ Vm m;
b _ _Vm _)_ ( Vs I/E)
> _exp( Vo =y lnl/ exp V;‘;—Vm_: n oy |

which coincides with the equations for these values obtained on the basis of Knudsen's equation for the flow
rate of a gas in a free-molecular process.

Let us examine the viscous limit of Eqs. (2.2) and 2.3)

_ 8VIn Rp App _ 8D

bn = paRs " 8D’ r  Rp

where ¢ is the coefficient of diffusion slippage, while the viscosity of the mixture is
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W= pVici+vie)vivs, co=min, Dy =kTc;/udvi;, = mame/m, _
Calculations were conducted according to Egs. (2.2) and (2.3) in the entire range of Knudsen numbers
for five pairs of gases. The integrals I,%, I}, and I;? needed for the calculations were determined on an elec-
tronic computer. The collision parameters were determined from experimental coefficients by the following
equations:

Vig = P/2%;, v = p/2n;, 8= kT/2uv;;D;;
bttt} /T 1 1\2
Vij = [n 2, 21]]-]+ Zl/ni +(2—nl_—§ﬁ:>

The calculated curves and experimental values of tm(6;;) and Apm(éij) are presented in Figs, 1 and 2.
The terms are as follows: Apy, in mm Hg, t,, in 10% sec, djj= 2616j/(61+6j). The curves and points corre~
spond to: 1) He—Ar, 2) Hy—D,, 3) Dy—Ar, 4) Hy,—Ar, 5) Hy—He.

With good agreement of the theoretical and experimental resulis with respect to Apy,, an increase in
the disagreement to 20% is observed in the intermediate process for the viscous and free-molecular limits.
The excess of the experimental values of Apy, over the theoretical values in the free-molecular region is
explained by the fact that the lighter gases have the principal share of the specular reflection.

The disagreement in the region of the viscous process with slippage apparently must be attributed to
the insufficiently accurate calculation of the coefficient of diffusion slippage, which is very sensitive to the
parameters of the interaction potentials of the molecules. Since only the ratio of fluxes of the components
enters into Apy,, it is of special interest to compare the theoretical calculations and experimental results
on the time it takes to reach the maximum baroeffect. It is seen from Fig. 2 that the agreement is good —
the disagreement not exceeding 10%. Thus, the comparison shows that the model BGK equations for the most
part describe the experimental data well. For better agreement in the region of the nearly free-molecular
process, it is necessary to adopt more realistic boundary conditions than completely diffuse reflection. In
order to achieve a correct description of the viscous limit either the model must be improved or the Boltz-
mann equation must be solved directly with the actual interaction potential of the molecules.

3. Letf us examine the flow, produced by pressure and concentration gradients, of a binary mixture
in a capillary from the point of view of the thermodynamics of irreversible processes. The fluxes of parti-
cle number and mass are written as

Ji=ni uid +ony (uyy = L Xy + LipX,
Jy = p [Kuy) — {uidl = LyX, + LpX,

respectively, where p is the density of the mixture, while

Xo:'—‘n —l

? = 0z

- 1 dp
Xi=—p— 5~

emerge in the role of thermodynamic forces, where,according to Onsager's interaction principle,the cross
kinetic coefficients are equal to Ljy=Ly. Having made use of the equations for the average velocities of
the components, we find the kinetic coefficients

R e "z %
Ly = —9%1-\,]—9[?%(@: + F)—eF; — —c:(;]-q% i (05 + Fi) — i Fy— Cii)i]
kT c, o, ) o,

L12 = ————elnjvj {:Tj- Fi -—_ c]-ot]- [Di -+ (1)1 —_ a—j F]:I

kT ai c’.‘:xi . ciai (I)

= o e @+ Fim O — P+ ELF — P 0= 2 0]
L= o | Pt 2 — (@54 20, )]
23 = W i ?]' i 3 ; i |
The difference between the cross kinetic coefficients has the form
KT [ c% ° %
Ly — Ly, = W[?(Q’l +F— @5~ Fy) + Ay F; —F — C—J_FH— ZFJ] 8.1)

By substituting Eqs. (1.4) and (1.5) into (3.1),0ne can show that Ly;—L,,=0 for arbitrary Knudsen num-
bers. In the limit (§; j= ) of the viscous process we have
L4
Ly, = Dyj0, Ly, = R?pn/8np
Ly = pn™ Dyj, Ly = apDy;

211



for the kinetic coefficients, where ap is the barodiffusion constant, with

P (2c; —1) (v; ]/mj_-_]— v; ]/m—;) + v, VE— €,v; ]/rr_n—l
(Cj ij +e¢; V) (c]-'vl. -+ ev;3)

The following conclusions can be drawn from the equality of the cross coefficients. The coefficient
Ly, characterizing the "separation effect” of the mixture in the entire range of Knudsen numbers, which is
of practical importance, is more conveniently studied experimentally by measuring Ly, in experiments on the
diffusion baroeffect. The simplicity and completely attainable sufficient accuracy of the measurement of
the coefficient of diffusion slippage from experiments on the baroeffect permit one to recommend its appli-
cation for the determination and control of parameters of the interaction potentials of molecules. An exact
expression for the coefficient of diffusion slippage did not exist before. The barodiffusion constant is cal-
culated exactly by Grad's method in [6] for any interaction potential.
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